

Detector Developments, Strategies and Perspectives At ESRF

Heinz Graafsma

People who do the work:

- Detectors Pool: Menhard Kocsis, Marc Diot
- Special Detectors: <u>John Morse, Thierry</u> <u>Martin, Cyril Ponchut, Menhard Kocsis</u>
- Analogue Electronics: <u>Jean-Claude Labiche</u>
- Digital Electronics: Christian Herve
- Software group
- Mechanical engineering group

Topics

- Structure at the ESRF
- Focus points
- Strategies
- High energy and high spatial resolution
- Avalanche Photo Diodes (APD's)
- Gas filled detectors
- New 2 D systems

Structure at the ESRF

- Detector Pool: off the shelf
- Special Detectors: consultation, tests, small developments
- Analogue/Transient elec: Frelon CCD
- Control elec: Specific electronics modules
- Digital elec (CS):Gas filled, drift diodes

Focus points

- High spatial resolution imaging (phosphors)
- Sub-milliseconds imaging (GFD's)
- New 2D systems (a-Si, pixel detectors, CMOS imagers, etc.)
- Beam monitoring
- High count rate 0D detectors (APD's, YAP:Ce).

Strategies

- Separate loan service from development.
- Support comes first, Developments second.
- Concentrate on what has most impact.
- Buy if you can, assemble if you have to, develop if you are allowed to.
- Collaborate: other SR, HEP, Space, Industry,...

HIGH ENERGIES IMAGING

PERFORMANCE

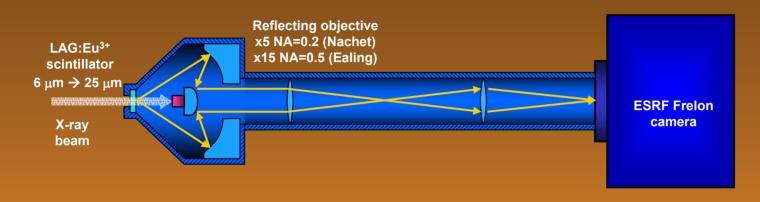


Image depth: 14 bit Input p

Pixel size: $14 \times 14 \mu m^2$

Input pixel size: $0.47\mu m$ or $1.4 \mu m$

Field of view: 1x1 mm² or 2.9x2.9 mm²

Spatial resolution: $4\mu m @ 65keV$

Typical acquisition time with kinetic pipeline mode

	Binning	CCD+Exposure(45ms)	Time for 1000 frames
2048 x 128	no	13.6 fps	73 sec
2048 x 256	no	9.7 fps	104 sec
2048 x 256	2x2	13.3 fps	75 sec

DETECTOR on ID15

AVALANCHE PHOTODIODE

Design and construction of a fast counter for X-rays.

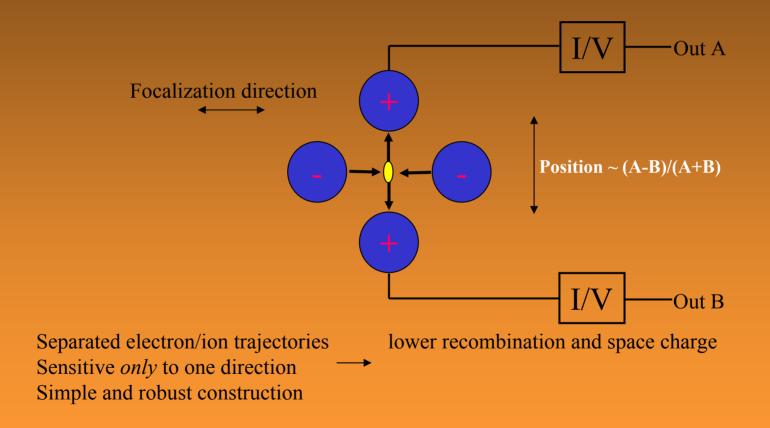
Made with Silicon Avalanche PhotoDiode.

- Energy range: 3 keV < Ex-ray < 30 keV (limited by thickness)
- Counting rate: $\sim 10^7$ cps
- Time resolution: ~ 1ns
- Dark noise: ~ 0.01 cps
- Energy resolution: ~20 % @ 24keV ~39% @ 12keV
- Single control module, simple user interface

AVALANCHE PHOTODIODE

7 Heads of detector available

- •Hamamatsu
 - •Two 5x3mm² 135 μm available
 - •φ=3mm 135μm (proto)
- •EGG
 - •Five 5x5mm² 110μm available
 - •10x10mm² 110 μm (future)

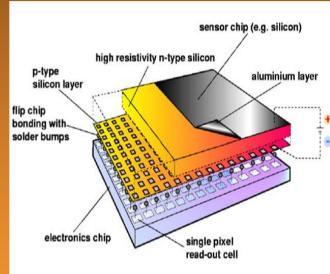

Acquisition system : ACE (APD Controller Electronic)

- Principle of use: amplitude (mV) ⇔ energy(eV)
 - 1 counter, 2 thresholds (high and low) for level discrimination
 - Counter with low level only = integral counter.
 - Counter with low-high level = counter in energy range.

GAS-FILLED DETECTORS

- Activities in 2002
 - Development of 1D 10 x 200 mm² detector.
 - Micro-ionization chambers.
 - Further development of GEM technology (with CERN)
- Ongoing projects
 - Collaboration in development of Parallel DAQ based 2D detectors.
 - Position sensitive ionization chambers for beam position monitoring.
 - →Obtained µm sensitivity with quadrupole chamber

Position sensitive quadrupole ionization chamber


Medipix is a collaborative project managed by CERN and involving several European institutes

The Medipix collaboration develops single photon counting area

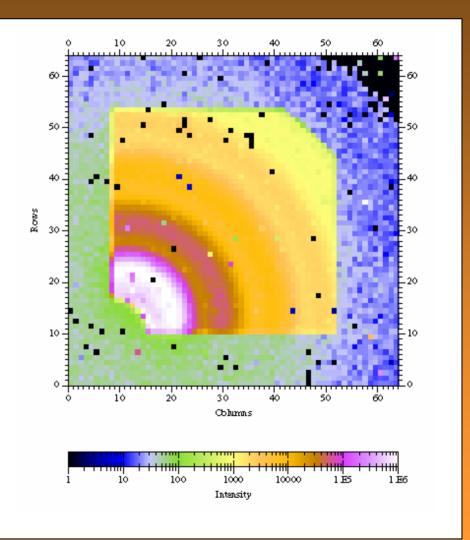
detector prototypes and evaluates them in:

- medical imaging
- non-destructive testing
- materials science
- nuclear decommissionning / gamma imaging

The ESRF joined the Medipix collaboration in August 2000

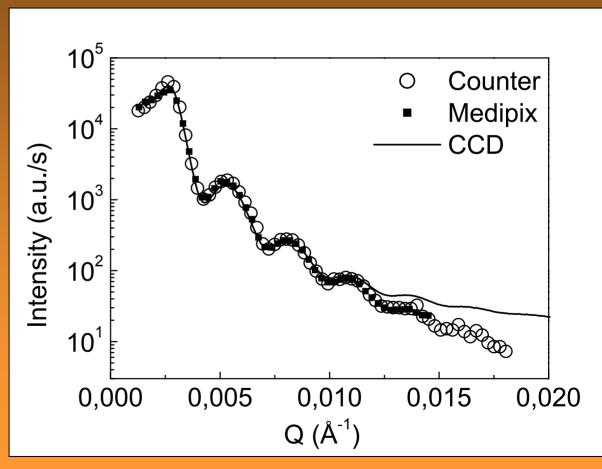
64x64 square pixels, 170 µm pitch 1.18 cm² sensitive area

SAXS: ID10


Beam: 8.12 keV, 20x20 μm

Sample: PMMA colloidal suspension

Acquisition: 100 x 0.2 sec exposures


Processing : dark subtraction

Maximum flux/pixel $\sim 10^5$ photons/s 6 orders of magnitude detected

SAXS: comparison Medipix/CCD/counter

Exposure times				
Medipix	20 s			
Counter	30 min.			
CCD	100 s			

PIXEL DETECTORS

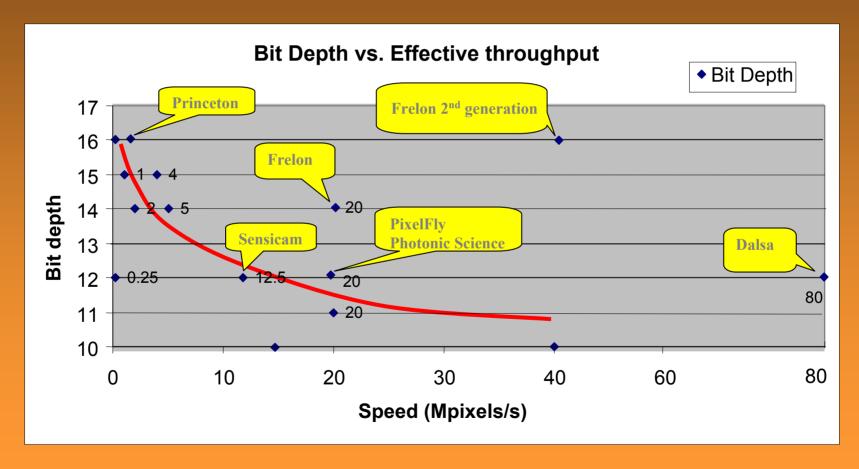
Ongoing Activities: IDEPHIX

Integrated project proposal for European funding:

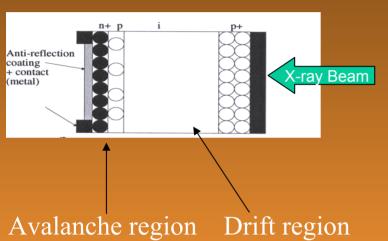
- Medical Imaging
- Non-destructive testing
- Safety inspection
- Synchrotron Radiation Science

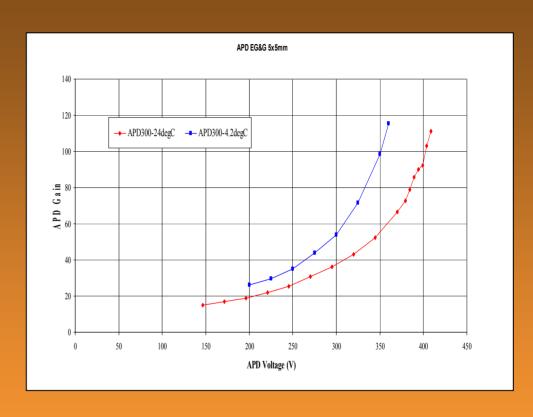
CERN, ESRF, PSI

TEST OF CCD CAMERA DALSA: 1M60


Characteristics	Measured	
Number of pixels	1024 x 1024	
Pixel size	14 x 14 μm²	
Dark current	452 e ⁻ /pixel/sec @ 25°C	
A/D converter	12 bit @ 4 x 20Mhz	
Gain	50 e ⁻ /ADU	
Dynamic Range	12 bit	
Saturation	4095	
Full Well capacity	204750 e⁻	
Readout noise	0.96 ADU	
Readout time	60 fps	
Storage	13sec → 800 frames	

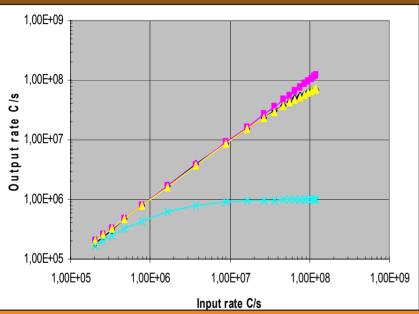
ANALOGUE AND TRANSIENT ELECTRONICS:


CCD CAMERA

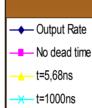

Scientific camera at ESRF

AVALANCHE PHOTODIODE

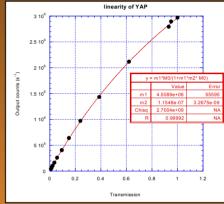
Real device "Reach-Through" APD



APD ≠ pin Internal Gain


AVALANCHE PHOTODIODE

Comparison of APD to


Yttrium Aluminium Oxide Perovskite (YAP:Ce) scintillator cyberstar

@12.5 KeV Hamamatsu 5x3mm² 5.68ns nonparalyzable model using log scales compare to 1us NaJ/PMT dead time.

YAIO₃:Ce scintillator

	Nal(TI)	YAP:Ce	APD
Availability	old	May 2003	May 2003
Active area	5cm ²	5cm ²	0.15cm ²
Energy range	5keV	2060keV	330keV
Energy resolution @ 22keV	28%	44%	30%
Dynamic with dead time correction	400Khz	2Mhz	50Mhz
Dead time	1μs	0.11μs	0.006 μs

ANALOGUE AND TRANSIENT ELECTRONICS: FRELON CAMERA

- Main achievements in 2002
 - Validation of concept for 2nd generation FRELON 16 bit (25000 grey levels), 40Mpixels/sec using DSP.
 - Design of a fast data acquisition board (2 Gbit/s serial data rate) dedicated to the 2nd generation FRELON. Possibility to extend to Dalsa camera.
 - In-house know-how: Gluing of one Taper on a CCD sensor (collaboration with J.Y. Massonnat Optics Group).
 - Kinetic Mode: 250fps for 16 lines: ID15,ID17.
- Ongoing Activities: FRELON 2nd generation
 - 2 prototypes for the end of 2003.
 - Ongoing purchase of 2 new tapers \sim 100 x 100 mm² (collaboration with ADSC).
- Camera on Beamline
 - 1k x 1k: ID11, ID19, probably ID22
 - 2k x 2k: BM5, ID2, ID13, ID17, ID19, ID22
 - Spares: two 1kx1k cameras, no 2kx2k camera

ANALOGUE AND TRANSIENT ELECTRONICS:

Comparison of FRELON to DALSA CAMERA

Characteristics	FRELON	DALSA	
Number of pixels	2048 x 2048	1024 x 1024	
Pixel size	14 x 14 μm²	14 x 14 μm²	
Dark current	3 e ⁻ /pixel/sec @ -20°C	452 e ⁻ /pixel/sec @ ^{25°C}	
A/D converter	14 bit @ 4 x 5Mhz	12 bit @ 4 x 20Mhz	
Gain	20 e ⁻ /ADU	50 e ⁻ /ADU	
Dynamic Range	14 bit	12 bit	
Saturation	16383	4095	
Full Well capacity	320000 e ⁻	204750 e ⁻	
Readout noise	1 ADU	0.96 ADU	
Readout time	5 fps	60 fps	
Storage		13sec → 800 frames	

Three-way-meeting 2003

Ongoing Activities: Medipix-2

Medipix-1

Readout chip:

- 64x64 square pixels, 170 µm pitch
- Variable threshold
- 2 MHz/pixel count rate
- 15 bit counters
- · Pixel threshold tuning

X-ray sensor:

1.18 cm² sensitive area

Medipix-2

Readout chip:

- 256 x 256 pixels, 55x55 µm pitch
- Energy windowing (2 thresholds)
- Positive or negative pulses (compatible with Si, CdTe, AsGa,...sensors)
- 1 MHz count rate
- 13 bit counters

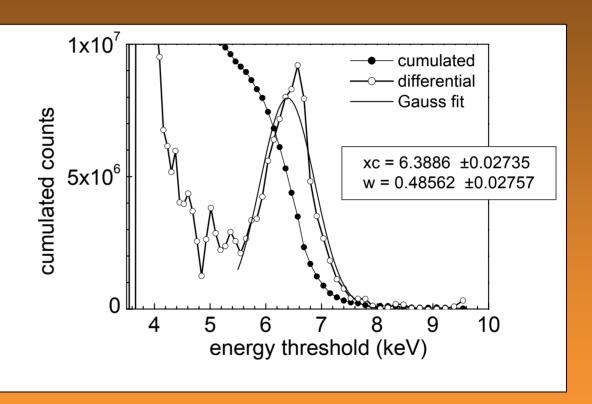
X-ray sensor:

• 1.98cm² sensitive area

Status

- •First X-ray tests made at CERN in December 2002
- •Tests planned at ESRF in 2003

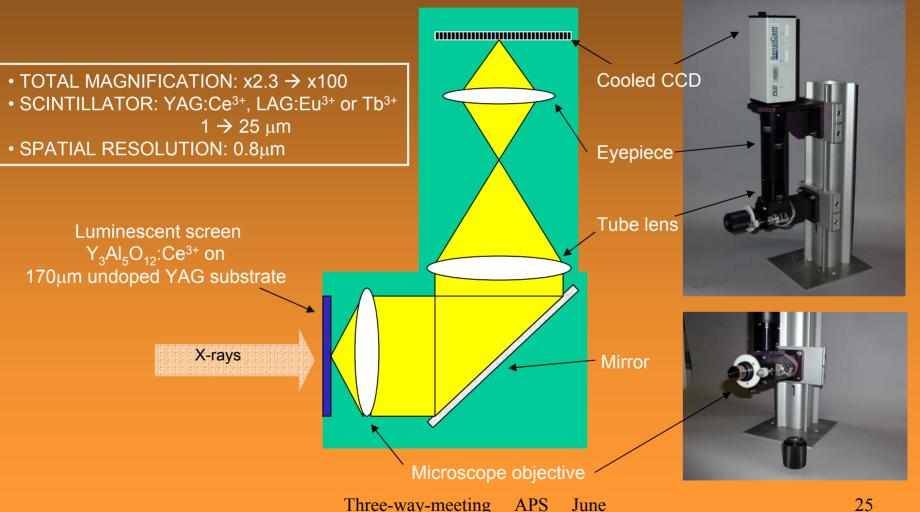
⁵⁵Fe source (5.9 keV, 6.4 keV)


Vth steps: 5 mV

Exposure time: 10 s

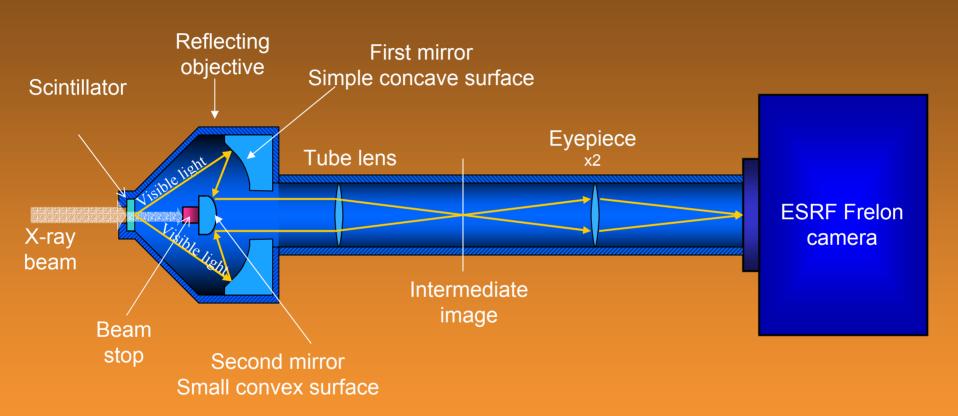
Summing over all pixels

Low energy calibration mask

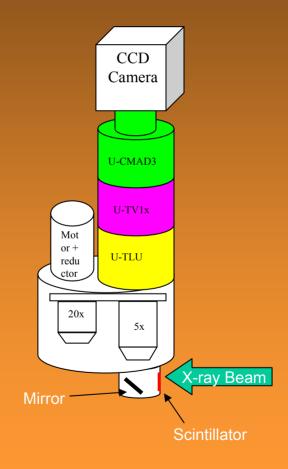

Energy resolution: possible

HIGH ENERGIES IMAGING

State-of-the-Art


FOLDED DETECTOR for Low Energy

2003


June

HIGH ENERGIES IMAGING

HIGH ENERGIES IMAGING Ongoing activities

- New x10 reflecting objective (compromise between magnification and NA)
- Development of high-energy highresolution imaging systems with 3 motorized zooms for ID11
- Thicker Lu₂O₃:Eu³⁺ and Gd₂O₃:Eu³⁺ scintillator for high energies (PLD)

TEST OF CCD CAMERA DALSA: 1M60

Advantages:

- High data rate 60fps
- Low readout noise
- Compact 94 x 94x 102 mm³
- Good understanding of technical requirements by Dalsa
- Camera for fast tomography

Disadvantages:

- Important dark current→ short exposure time
- Cooling system impossible
- Quality of chip (5 columns defect)
- 12 bit

